27,055 research outputs found

    Clausius-Clapeyron relations for first-order phase transitions in bilayer quantum Hall systems

    Get PDF
    A bilayer system of two-dimensional electron gases in a perpendicular magnetic field exhibits rich phenomena. At total filling factor ν_(tot)=1, as one increases the layer separation, the bilayer system goes from an interlayer-coherent exciton condensed state to an incoherent phase of, most likely, two decoupled composite-fermion Fermi liquids. Many questions still remain as to the nature of the transition between these two phases. Recent experiments have demonstrated that spin plays an important role in this transition. Assuming that there is a direct first-order transition between the spin-polarized interlayer-coherent quantum Hall state and spin partially polarized composite Fermi-liquid state, we calculate the phase boundary (d/l)_c as a function of parallel magnetic field, NMR/heat pulse, temperature, and density imbalance, and compare with experimental results. Remarkably good agreement is found between theory and various experiments

    Graphene nanoring as a tunable source of polarized electrons

    Get PDF
    We propose a novel spin filter based on a graphene nanoring fabricated above a ferromagnetic strip. The exchange interaction between the magnetic moments of the ions in the ferromagnet and the electron spin splits the electronic states, and gives rise to spin polarization of the conductance and the total electric current. We demonstrate that both the current and its polarization can be controlled by a side-gate voltage. This opens the possibility to use the proposed device as a tunable source of polarized electrons.Comment: 12 pages, 7 figures, accepted in Nanotechnolog

    Speciation of precious metal anti-cancer complexes by NMR spectroscopy

    Get PDF
    Understanding the mechanism of action of anti-cancer agents is of paramount importance for drug development. NMR spectroscopy can provide insights into the kinetics and thermodynamics of the binding of metallodrugs to biomolecules. NMR is most sensitive for highly abundant I = 1/2 nuclei with large magnetic moments. Polarization transfer can enhance NMR signals of insensitive nuclei at physiologically-relevant concentrations. This paper reviews NMR methods for speciation of precious metal anti-cancer complexes, including platinum-group and gold-based anti-cancer agents. Examples of NMR studies involving interactions with DNA and proteins in particular are highlighted

    Multi-quark components in baryons

    Full text link
    A brief review on some recent progresses in our understanding of multi-quark components in baryons is presented. The multi-quark components in baryons seem to be mainly in colored quark cluster configurations rather than in ``meson cloud'' configurations or in the form of a sea of quark-antiquark pairs. The colored quark cluster multi-quark picture gives a natural explanation of empirical indications for a positive strangeness magnetic moment μs\mu_s of the proton and the longstanding mass-reverse problem of S11(1535) and P11(1440)N∗resonances.Amodel−predictionfortheP11(1440) N* resonances. A model-prediction for the \mu_s$ of the proton is given.Comment: Contribution to the International Conference on QCD and Hadronic Physics, June 16-20, 2005, Beijin

    Spectral responses in granular compaction

    Full text link
    The slow compaction of a gently tapped granular packing is reminiscent of the low-temperature dynamics of structural and spin glasses. Here, I probe the dynamical spectrum of granular compaction by measuring a complex (frequency-dependent) volumetric susceptibility χ~v\tilde{\chi}_v. While the packing density ρ\rho displays glass-like slow relaxations (aging) and history-dependence (memory) at low tapping amplitudes, the susceptibility χ~v\tilde{\chi}_v displays very weak aging effects, and its spectrum shows no sign of a rapidly growing timescale. These features place χ~v\tilde{\chi}_v in sharp contrast to its dielectric and magnetic counterparts in structural and spin glasses; instead, χ~v\tilde\chi_v bears close similarities to the complex specific heat of spin glasses. This, I suggest, indicates the glass-like dynamics in granular compaction are governed by statistically rare relaxation processes that become increasingly separated in timescale from the typical relaxations of the system. Finally, I examine the effect of finite system size on the spectrum of compaction dynamics. Starting from the ansatz that low frequency processes correspond to large scale particle rearrangements, I suggest the observed finite size effects are consistent with the suppression of large-scale collective rearrangements in small systems.Comment: 18 pages, 17 figures. Submitted to PR

    The effect of inelastic processes on tunneling

    Full text link
    We study an electron that interacts with phonons or other linear or nonlinear excitations as it resonantly tunnels. The method we use is based on mapping a many-body problem in a large variational space exactly onto a one-body problem. The method is conceptually simpler than previous Green's function approaches, and allows the essentially exact numerical solution of much more general problems. We solve tunneling problems with transverse channels, multiple sites coupled to phonons, and multiple phonon degrees of freedom and excitations.Comment: 12 pages, REVTex, 4 figures in compressed tar .ps forma

    Poisson-noise induced escape from a metastable state

    Full text link
    We provide a complete solution of the problems of the probability distribution and the escape rate in Poisson-noise driven systems. It includes both the exponents and the prefactors. The analysis refers to an overdamped particle in a potential well. The results apply for an arbitrary average rate of noise pulses, from slow pulse rates, where the noise acts on the system as strongly non-Gaussian, to high pulse rates, where the noise acts as effectively Gaussian
    • …
    corecore